Lojistikte Sayısal Teknikler

Lojistikte maliyetleri azaltılmak, süreçleri iyileştirmek, lojistik operasyonlar gibi lojistik kararlar verilirken kalitatif ve kantitatif yöntemlerden yararlanılmaktadır. Kalitatif yöntemler, karar vericilerin geçmiş deneyimlerine, eğitim düzeylerine, iş tecrübelerine, görüş ve yargılarına dayanarak verilen kararlardır. Kantitatif yöntemlerde ise tamamen matematiksel modellere ve yöntemlere dayanarak verilen kararlardır.

Problem Modelinin Kurulması

Lojistik problemlerin çözülebilmesi için problem modelinin kurulmasına ihtiyaç duyulmaktadır. Bunlar, problemin tanımlanması, matematiksel modelin kurulması, modelin çözülmesi, modelin geçerliliğinin onaylanması ve modelin uygulanması aşamalarıdır.

Analitik Yöntem

Analitik yöntemler, belirli kısıtlar altında belirli bir amaca ulaşmak için kullanılan ve her zaman en uygun çözümü veren tekniklerdir.

Doğrusal Programlama: Kıt kaynakların kullanarak alternatif faaliyetler arasından faydayı optimum kılmak için tasarlanmış bir matematiksel modellemedir. Bu tür problemlerin çözümleri için Simpleks Yöntem, Büyük M Yöntemi ve İki Aşamalı Yöntem kullanılmaktadır.

Tamsayılı Doğrusal Programlama: Karar değişkenlerinin tümü kesikli değişken olduğu durumlardaki matematiksel modelleme türüdür. Bu yöntemlerin en bilenenleri; Dal -Sınır Algoritması, Sıfır -Bir Saklı Sayma Algoritması ve Kesme Düzlemi Algoritması’dır.

Karma Tamsayılı Doğrusal Programlama: Karar değişkenlerinin bir kısmı sürekli bir kısmı kesikli değişken olduğu durumlardaki matematiksel modelleme türüdür.

Sezgisel Yöntem

Sezgisel yöntemler, analitik olarak çözümü olmayan veya çözüm süresi çok uzun problemler için kullanılan ve sadece bu problem türünü çözebilen ve hızlı sonuç üretebilen yöntemlerdir.

Ulaştırma Problemleri ve Sezgisel Yöntemleri:

Bu problemde türünde, hedeflerin ihtiyaçları ve kaynakların kapasiteleri dikkate alınarak en düşük maliyetle ürünlerin hedeflerden kaynaklara gönderim miktarlarının belirlenmesidir. Kuzey -Batı Yöntemi, Minimum Maliyet Yöntemi ve Vogel Yaklaşımı Yöntemi ile ilk başlangıç çözümleri elde edilir.

Gezgin Satıcı Problemi (GSP): Başladığı noktaya dönülmek üzere, birden çok sayıda coğrafi alana dağınık yerleşmiş noktalara tek ziyaret yapılarak toplam mesafeyi, süreyi veya maliyeti en küçükleme problemi olarak tanımlanır.

Araç Rotalama Problemi (ARP) : Tek veya çoklu depolardan ilave kısıtlara tabi olarak birçok coğrafi dağınık şehre veya müşterilere en uygun teslimat veya toplama rotalarını tasarlama problemidir.

GSP ve ARP için geliştirilmiş algoritmalar arasında En yakın komşuluk sezgiseli, Ters Çevirme Sezgiseli, Tasarruf algoritması, Süpürme algoritması, İki Aşamalı Yöntem ve Geliştirilmiş Pedal Sezgiseli bulunmaktadır.

Metasezgisel Yöntem

Metasezgisel yöntemler, analitik yöntemler ile çözülemeyen ve çözüm süresi genellikle çok uzun zaman alan çok karmaşık yapıdaki problemlerin çözmek için genellikle doğadaki canlılardan veya olaylardan esinlenerek geliştirilmiş algoritmalardır.

Simülasyon

Zaman içinde gerçek dünyadaki bir süreç veya sistemin taklidi olan simülasyonda bir sistemin yapay bir tarihçesi oluşturulur ve yapay tarih incelenerek gerçek sistemin çalışma özelliklerine ilişkin çıkarımlarda bulunulur.